Recognition and Classification of Figures in PDF Documents
نویسندگان
چکیده
Graphics recognition for raster-based input discovers primitives such as lines, arrowheads, and circles. This paper focuses on graphics recognition of figures in vector-based PDF documents. The first stage consists of extracting the graphic and text primitives corresponding to figures. An interpreter was constructed to translate PDF content into a set of self-contained graphics and text objects (in Java), freed from the intricacies of the PDF file. The second stage consists of discovering simple graphics entities which we call graphemes, e.g., a pair of primitive graphic objects satisfying certain geometric constraints. The third stage uses machine learning to classify figures using grapheme statistics as attributes. A boosting-based learner (LogitBoost in the Weka toolkit) was able to achieve 100% classification accuracy in hold-out-one training/testing using 16 grapheme types extracted from 36 figures from BioMed Central journal research papers. The approach can readily be adapted to raster graphics recognition.
منابع مشابه
An Architecture for Information Extraction from Figures in Digital Libraries
Scholarly documents contain multiple figures representing experimental findings. These figures are generated from data which is not reported anywhere else in the paper. We propose a modular architecture for analyzing such figures. Our architecture consists of the following modules: 1. An extractor for figures and associated metadata (figure captions and mentions) from PDF documents; 2. A Search...
متن کاملExtracting Precise Data from PDF Documents for Mathematical Formula Recognition
As more and more scientific documents become available in PDF format, their automatic analysis becomes increasingly important. We present a procedure that extracts mathematical symbols from PDF documents by examining both the original PDF file and a rasterised version. This provides more precise information than is available either directly from the PDF file or by traditional character recognit...
متن کاملArabic News Articles Classification Using Vectorized-Cosine Based on Seed Documents
Besides for its own merits, text classification (TC) has become a cornerstone in many applications. Work presented here is part of and a pre-requisite for a project we have overtaken to create a corpus for the Arabic text process. It is an attempt to create modules automatically that would help speed up the process of classification for any text categorization task. It also serves as a tool for...
متن کاملExtracting Precise Data on the Mathematical Content of PDF Documents
As more and more scientific documents become available in PDF format, their automatic analysis becomes increasingly important. We present a procedure that extracts mathematical symbols from PDF documents by examining both the original PDF file and a rasterized version. This provides more precise information than is available either directly from the PDF file or by traditional character recognit...
متن کاملAn Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کامل